56 research outputs found

    Insights for the partitioning of ecosystem evaporation and transpiration in short‐statured croplands

    Full text link
    Reducing water losses in agriculture needs a solid understanding of when evaporation (E) losses occur and how much water is used through crop transpiration (T). Partitioning ecosystem T is however challenging, and even more so when it comes to short-statured crops, where many standard methods lead to inaccurate measurements. In this study, we combined biometeorological measurements with a Soil-Plant-Atmosphere Crop (SPA-Crop) model to estimate T and E at a Swiss cropland over two crop seasons with winter cereals. We compared our results with two data-driven approaches: The Transpiration Estimation Algorithm (TEA) and the underlying Water Use Efficiency (uWUE). Despite large differences in the productivity of both years, the T to evapotranspiration (ET) ratio had relatively similar seasonal and diurnal dynamics, and averaged to 0.72 and 0.73. Our measurements combined with a SPA-Crop model provided T estimates similar to the TEA method, while the uWUE method produced systematically lower T even when the soil and leaves were dry. T was strongly related to the leaf area index, but additionally varied due to climatic conditions. The most important climatic drivers controlling T were found to be the photosynthetic photon flux density (R2 = 0.84 and 0.87), and vapor pressure deficit (R2 = 0.86 and 0.70). Our results suggest that site-specific studies can help establish T/ET ratios, as well as identify dominant climatic drivers, which could then be used to partition T from reliable ET measurements. Moreover, our results suggest that the TEA method is a suitable tool for ET partitioning in short-statured croplands

    Mixed Quotation

    Get PDF
    The central challenge posed by mixed quotation is that it exhibits both regular semantic use and metalinguistic reference, simultaneously. Semanticists disagree considerably on how to capture the interplay between these two meaning aspects. In this case study I present the various semantic approaches to mixed quotation and compare their predictions with respect to empirical phenomena like indexical shifting, projection, and non‐constituent mixed quotation

    Detection of volatile organic compounds as potential novel biomarkers for chorioamnionitis - proof of experimental models

    Get PDF
    Background: Histologic chorioamnionitis is only diagnosed postnatally which prevents interventions. We hypothesized that volatile organic compounds (VOCs) in the amniotic fluid might be useful biomarkers for chorioamnionitis and that VOC profiles differ between amnionitis of different origins. Methods: Time-mated ewes received intra-amniotic injections of media or saline (controls), or live Ureaplasma parvum serovar 3 (Up) 14, 7 or 3d prior to c-section at day 124 gestational age (GA). 100 Όg recombinant ovine IL-1α was instilled at 7, 3 or 1d prior to delivery. Headspace VOC profiles were measured from amniotic fluids at birth using ion mobility spectrometer coupled with multi-capillary columns. Results: 127 VOC peaks were identified. 27 VOCs differed between samples from controls and Up- or IL-1α induced amnionitis. The best discrimination between amnionitis by Up vs. IL-1α was reached by 2-methylpentane, with a sensitivity/specificity of 96/95% and a positive predictive value/negative predictive values of 96 and 95%. The concentration of 2-methylpentane in VOCs peaked 7d after intra-amniotic instillation of Up. Discussion: We established a novel method to study headspace VOC profiles of amniotic fluids. VOC profiles may be a useful tool to detect and to assess the duration of amnionitis induced by Up. 2-methylpentane was previously described in the exhalate of women with pre-eclampsia and might be a volatile biomarker for amnionitis. Amniotic fluids analyzed by ion mobility spectrometry coupled with multi-capillary columns may provide bedside diagnosis of amnionitis and understanding inflammatory mechanisms during pregnancy

    Gap-filling eddy covariance methane fluxes : Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands

    Get PDF
    Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting halfhourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    • 

    corecore